

For research use only

Protocol

CD19 Nano-TACS® Agarose Column Starter Kit

Cat. no. 6-3307-002

mouse, for splenocytes

1. GENERAL INFORMATION & TECHNICAL SPECIFICATIONS

Kit components:

Cat. no.	Product	Quantity	Required/isolation
6-6310-300	Strep-Tactin® TACS Agarose Column, 0.3 ml	2	1
6-8507-150	CD19 Nano-Strep, mouse, lyophilized, 50 µg	1	20 µg
6-6996-001	100 mM Biotin stock solution, 250 μl	1	60 µl
6-6320-025	10x Buffer CI, 25 ml 10x PBS containing 10 mM EDTA and 5% BSA	1	~2 ml
6-3333-001	TACS Column Adapter (0.3 ml column)	1	1

Required: ddH₂O for Buffer CI dilution

Column 2 x 10⁷ target cells out of 1 x 10⁸ splenocytes **specifications:**Reservoir volume: 3 ml; **For single use only!**

Storage: Store all components at 2 - 8 °C. Store reconstituted Nano-Strep at -80 °C.

(Buffer CI may also be stored at 15 - 25 °C)

Stability: 6 months after shipping.

Shipping: Room temperature

Hazards: Products are not classified as hazardous according to (EC) No 1272/2008 [CLP].

Material Safety Data Sheets are provided.

2. INITIAL PREPARATIONS

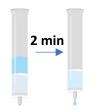
2.1. Reagent preparation

Allow the reagents to equilibrate to room temperature (RT) prior to use. For a sterile isolation, work under a safety cabinet. **The following volumes will be sufficient for one selection process**.

- **2.1.1** Prepare 1x Buffer CI from 10x stock by diluting with ddH₂O. Degas buffer before use, as air bubbles could block the column.
- **2.1.2.** Dissolve **one vial** of lyophilized Nano-Strep (**50 μg**) in **1 ml** Buffer Cl by carefully pipetting up and down (avoid foam formation). **Do not vortex!**

Required per column: **20 µg** Nano-Strep in **400 µl** Buffer CI. Store remaining Nano-Strep solution at -80 °C (stable for 6 months) if not required immediately

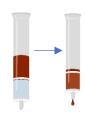
2.1.3. Prepare 1 mM Biotin Elution Buffer by adding **60 μI** of the 100 mM Biotin stock solution to **6 mI** Buffer CI. Mix thoroughly.


2.2. Sample preparation

- **2.2.1.** Prepare splenocytes in Buffer Cl.
- 2.2.2. Adjust the concentration of the splenocytes to $1 5 \times 10^7$ total cells per ml. To remove clumps and to prevent aggregates, pass splenocytes through a 40 μ m nylon mesh before isolation

2.3. Column preparation

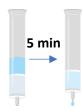
- **2.3.1. Remove** the caps at the top and at the bottom of the column. Allow the storage solution to drain. Place the Strep-Tactin® TACS Agarose Column into the TACS Column Adapter.
- **2.3.2. Wash** the Strep-Tactin[®] TACS Agarose Column by applying **1 ml** Buffer Cl and allow the buffer solution to enter the packed bed completely.


- **2.3.3.** Load the 400 μl Nano-Strep solution (2.1.2.) onto the Strep-Tactin[®] TACS Agarose Column. Let the Nano-Strep solution enter the packed bed completely. Incubate for **2 min**.
- **2.3.4. Wash** the Strep-Tactin[®] TACS Agarose Column with **600 μI** Buffer CI. Discard effluent and change collection tube. Strep-Tactin[®] TACS Agarose Column is now ready for cell isolation.

Do not interrupt the procedure for more than 60 min.

3. PROTOCOL

3.1. Cell isolation from splenocytes


311 Load

Apply diluted splenocytes (2.2.2.) in steps of **max. 3 ml**. Collect flow-through containing unlabeled cells.

3.1.2. Wash

Apply **3x 3 ml** Buffer CI. (In each step: Let the buffer solution enter the gel bed completely). The agarose bed should now be white again.

3.1.3. Elute

From this step on your effluent contains your target cells. Use a **new collection tube**. Apply **400 µl** Biotin Elution Buffer (2.1.3.) and incubate for **5 min**. Elute target cells by applying **2.6 ml** Biotin Elution Buffer. Elute a second time with additional **3 ml** Biotin Elution Buffer.

3.3. Further procedure

Centrifuge your eluted cell suspension for 10 min at 300 x g. Discard the supernatant and dissolve cell pellet in your desired buffer.

If you plan to continue with a biotin-sensitive assay, please remove biotin by washing with **50 ml** Buffer CI twice. Discard supernatant **completely.**

4. TROUBLESHOOTING

Low yield

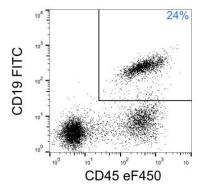
Option 1:

Check for biotin contamination in your samples.

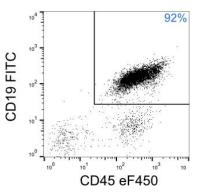
Option 2:

Use flow restrictor during sample loading.

Option 3:


Re-apply flow-through (depleted sample) to the column (3.1.1./3.2.1.).

Low purity


Invert columns after each wash step three times.

5. EXAMPLE DATA

Separation of CD19⁺ B cells from mouse spleen using the CD19 Nano-TACS[®] Agarose Column Starter Kit. Unlysed cells were stained with anti-mouse CD19-FITC (1D3) / CD45-eF450 and analyzed by flow cytometry (CytoFlex, BC). Dead cells were excluded from the analysis using DAPI staining. Doublet and debris discrimination were performed using FSC/SSC signals.

Before isolation

After isolation

Check our Downloads page

www.iba-lifesciences.com/download-area.html

for the latest version of this protocol

Info on warranty / licensing and trademarks available at:

www.iba-lifesciences.com/patents-licenses-trademarks.html

If you have any questions, please contact

fab-tacs@iba-lifesciences.com

We are here to help!