NEUROMICS 🖊 🟏

Autophagy Assay, Red

Data Sheet

Catalog Number:	KF17373
Applications:	Detects and monitors the in vitro development of autophagy in living cells
Storage:	 Store the unopened Autophagy Probe, Red (Pack 2) at ≤-20°C until the expiration date. Store the remaining unopened kit components (Pack 1) at ≤8°C until the expiration date Once reconstituted with DMSO, use Autophagy Probe, Red immediately, or aliquot and store at ≤-20° for 6 months protected from light. Avoid repeated freeze thaw cycles
Contents	KF17373-50 – 50 tests
	 1 vial of Autophagy Probe, Red (50 tests/vial) 1 bottle of 10x Cellular Assay Buffer (15 mL) 1 bottle of Fixative (6 mL) KF17373-200 – 200 Tests
	• 4 vials of Autophagy Probe, Red (50 tests/vial)
	 1 bottle of 10x Cellular Assay Buffer (60 mL) 1 bottle of Fixative (6 mL)
Recommended Materials	 DMSO to reconstitute Autophagy Probe, Red (100 µL per vial). Additional DMSO is needed to create controls.
	• DiH ₂ 0, 135-540 mL to dilute 10X Cellular Assay Buffer
	 Phosphate buffered saline (PBS) pH 7.4, 400 µL per vial to dilute Autophagy Probe, Red
	 Cultured cells treated with the experimental conditions ready to be analyzed
	 Reagents to induce or inhibit autophagy such as Rapamycin
	 (Invivogen, #tlrl-rap, CAS #53123-88-9) and Chloroquine (Sigma-Aldrich, #C6628, CAS #50-63-5)
	Hemocytometer
	Centrifuge at <200 x g
	FACS tubes (for flow cytometry analysis)
	 15 mL polypropylene centrifuge tubes (1 per sample)

Introduction

Autophagy is a conserved lysosomal recycling process by which cells break down their own components such as proteins, lipids, and carbohydrates. Autophagy plays a critical role in maintaining homeostasis by preventing the accumulation of damaged organelles by disassembling unnecessary or dysfunctional cells and cellular components¹. Autophagy occurs at low levels in the cell under normal conditions and can be rapidly upregulated during times of starvation or stress. Such degradation activities serve to provide nutrients (amino acids, nucleotides, fatty acids, etc.) and energy during periods of elevated bioenergetic demands^{1,2}. Another function of autophagy is to assist with the detection and destruction of intracellular pathogens (viruses, bacteria, and parasites)³. Dysregulation of autophagy has been associated with many disease states including cancer, infection, and degenerative diseases².

FOR RESEARCH USE ONLY

NEUROMICS' REAGENTS ARE FOR IN VITRO AND CERTAIN NON-HUMAN IN VIVO EXPERIMENTAL USE ONLY AND NOT INTENDED FOR USE IN ANY HUMAN CLINICAL INVESTIGATION, DIAGNOSIS, PROGNOSIS, OR TREATMENT. THE ABOVE ANALYSES ARE MERELY TYPICAL GUIDES. THEY ARE NOT TO BE CONSTRUED AS BEING SPECIFICATIONS. ALL OF THE ABOVE INFORMATION IS, TO THE BEST OF OUR KNOWLEDGE, TRUE AND ACCURATE. HOWEVER, SINCE THE CONDITIONS OF USE ARE BEYOND OUR CONTROL, ALL RECOMMENDATIONS OR SUGGESTIONS ARE MADE WITHOUT GUARANTEE, EXPRESS OR IMPLIED, ON OUR PART. WE DISCLAIM ALL LIABILITY IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED HEREIN OR OTHERWISE, AND ALL SUCH RSKS ARE ASSUMED BY THE USER. WE FURTHER EXPRESSLY DISCLAIM ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. V2/08/2012

> www.neuromics.com Neuromics • 5325 West 74th Street, Suite 8 • Edina, MN 55439 phone 866-350-1500 • fax 612-677-3976 • e-mail: <u>pshuster@neuromics.com</u>

Autophagy is a dynamic process typically divided into three stages (Figure 1)¹. During stage one, cytoplasmic components targeted for degradation are sequestered within a doublemembrane phagophore (also called the isolation membrane). This results in the formation of double-membrane vesicle called the autophagosome. During stage two, the autophagosome fuses with the lysosome to form the autophagolysosome or autolysosome. Degradation of the autophagosomal contents occurs during stage three^{1,4}.

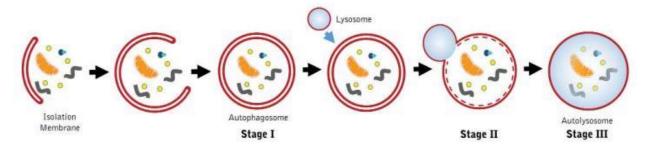
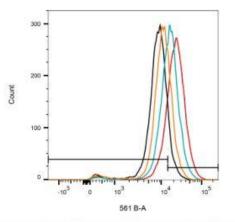



Figure 1. Cellular Process of Autophagy. Autophagy is an intracellular degradation process during which cytosolic organelles and materials are enclosed within an isolation membrane to form an autophagosome. The outer membrane of the autophagosome fuses with the lysosome. The sequestered material is subsequently degraded within the autolysosome.

Autophagy Assay, Red enables researchers to detect and monitor the in vitro development of autophagy in living cells. Autophagy Probe, Red is a cell-permeant aliphatic molecule that fl uoresces brightly when inserted in the lipid membranes of autophagosomes and autolysosomes. Autophagy Probe, Red can be readily detected by flow cytometry (Figure 2) with optimal excitation at 590 nm and peak emission at 620 nm. Autophagy Probe, Red is for research use only. Not for use in diagnostic procedures.

Figure 2. Flow Cytometry Results. Autophagy Assay Kit, Red was used to assess the induction of autophagy in Jurkat cells. Cells were either untreated (Black) or treated with 0.5 µM Rapamycin (Orange), 10 µM Chloroguine (Blue), or both 0.5 µM Rapamycin and 10 µM Chloroquine (Red) for 18 hours. After staining with Autophagy Probe, Red for 60 minutes, cells were washed and analyzed by flow cytometry (BD LSRFortessa Special Order flow cytometer equipped with a green/yellow laser (561 nm excitation) and a 610/20 emission filter). An overlay of the histograms is shown on the right. A table displaying the median fluorescence signal, % negative, and % positive cells is shown below. Treatment with Rapamycin or chloroguine increased the fluorescence signal detected compared to the untreated control. Combined treatment of rapamycin and chloroquine further increased the fluorescence signal detected. Data courtesy of Dr. Kristi Strandberg (ICT 228:37-40).

Treatment	Median (561 B-A) 8658	% Negative 86.0	% Positive 14.0
Untreated (DMS0)			
Rapamycin	11146	67.8	32.2
Chloroquine	16004	36.5	63.5
Rapamycin + Chloroquine	22237	17.9	82.1

FOR RESEARCH USE ONLY

NEUROMICS' REAGENTS ARE FOR IN VITRO AND CERTAIN NON-HUMAN IN VIVO EXPERIMENTAL USE ONLY AND NOT INTENDED FOR USE IN ANY HUMAN CLINICAL INVESTIGATION, DIAGNOSIS, PROGNOSIS, OR TREATMENT. THE ABOVE ANALYSES ARE MERELY TYPICAL GUIDES. THEY ARE NOT TO BE CONSTRUED AS BEING SPECIFICATIONS. ALL OF THE ABOVE INFORMATION IS, TO THE BEST OF OUR KNOWLEDGE, TRUE AND ACCURATE. HOWEVER, SINCE THE CONDITIONS OF USE ARE BEYOND OUR CONTROL, ALL RECOMMENDATIONS OR SUGGESTIONS ARE MADE WITHOUT GUARANTEE, EXPRESS OR IMPLIED, ON OUR PART. WE DISCLAIM ALL LIABILITY IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED HEREIN OR OTHERWISE, AND ALL SUCH RSKS ARE ASSUMED BY THE USER. WE FURTHER EXPRESSLY DISCLAIM ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. V2/08/2012

> www.neuromics.com Neuromics • 5325 West 74th Street, Suite 8 • Edina, MN 55439 phone 866-350-1500 • fax 612-677-3976 • e-mail: <u>pshuster@neuromics.com</u>

Detection Equipment

The assay can be analyzed with a fl ow cytometer. Use filter pairings that best approximate these settings:

 Autophagy Probe, Red reagent optimally excites at 590 nm and has a peak emission at 620 nm (use a green/yellow laser for flow cytometry).

Experimental Preparation

Staining cells with Autophagy Probe, Red can be completed within a few hours. However, Autophagy Probe, Red is used with living cells, which require periodic maintenance and cultivation several days in advance. In addition, once the proper number of cells has been cultivated, time must be allotted for the experimental treatment, which may vary. The recommended sample size is 0.5 mL cells at 5 x 105 cells/mL.

Create cell populations, such as:

- a) Cells that were exposed to the experimental treatment.
- b) A negative control population of cells that received a placebo treatment.

Culture cells to a density optimal for the specifi c experimental protocol. Cell density should not exceed 106 cells/mL. Cells cultivated in excess of this concentration may begin to naturally enter apoptosis. An initial experiment may be necessary to determine how much Autophagy Probe, Red reagent to use.

Controls

Create experimental samples and control cell populations:

- a. Treated experimental population(s): cells exposed to the experimental condition(s).
- b. Positive control for Autophagy Probe, Red (cells induced to initiate autophagy): Numerous treatments exist for activating autophagy (such as starvation in Earl's Balanced Salt Solution, or exposure to Rapamycin which mimics starvation by inhibiting mTOR) or inhibiting fusion of autophagosome with lysosomes and lysosomal degradation (exposure to Chloroquine). Figure 2 shows Jurkat cells that had been treated with 0.5 µM Rapamycin and 10 µM Chloroquine for 18 hours.
- c. Negative control for Autophagy Probe, Red (untreated cells): cells mock-treated with DMSO.

A common pool of cells should be used to generate the positive and negative control populations for Autophagy Probe, Red, and should contain similar quantities of cells. For example, if labeling with Autophagy Probe, Red, make 4 populations:

- 1&2. Unlabeled: induced and untreated cells
- 3&4. Autophagy Probe, Red-labeled: induced and untreated cells

Preparation of 1X Cellular Assay Buffer

Cellular Assay Buffer is an isotonic solution used to stabilize cells when analyzing by flow cytometry. Cellular Assay Buffer contains mammalian proteins to stabilize cells, and sodium azide to retard bacterial growth (1X Cellular Assay Buffer contains 0.01% w/v sodium azide). Alternative solutions including cell culture media containing FBS and other additives may be used instead of 1X Cellular Assay Buffer. When selecting a solution, take care to avoid prolonged incubation in a nutrient-depleted buffer, as this can induce starvation leading to an unintentional induction of autophagy.

- 1. 10X Cellular Assay Buffer may form precipitates during cold storage. If this happens, gently warm it until all crystals have dissolved. Do not boil.
- Dilute 10X Cellular Assay Buffer 1:10 in diH2O. For example, add 15 mL 10X Cellular Assay Buffer to 135 mL diH2O for a total of 150 mL, add 60 mL 10X Cellular Assay Buffer to 540 mL diH2O for a total of 600 mL.
- 1X Cellular Assay Buffer may be stored at 2-8°C and used within 1 week or frozen and used within 6 months.

Preparation of Autophagy Probe, Red Reagent

Autophagy Probe, Red is supplied as a lyophilized powder that may be slightly visible as an iridescent purple sheen inside the vial. Protect from light and use gloves when handling. Once diluted in aqueous buffer, Autophagy Probe, Red solution must be used immediately; prepare it just before staining.

 Reconstitute the vial of Autophagy Probe, Red with 100 µL DMSO to form the 250X stock solution. The stock solution should be bluish-purple. Once reconstituted in DMSO, it may be aliquoted and stored at ≤-20°C for 6 months protected from light. Avoid repeated freeze/thaw cycles.

FOR RESEARCH USE ONLY

NEUROMICS' REAGENTS ARE FOR IN VITRO AND CERTAIN NON-HUMAN IN VIVO EXPERIMENTAL USE ONLY AND NOT INTENDED FOR USE IN ANY HUMAN CLINICAL INVESTIGATION, DIAGNOSIS, PROGNOSIS, OR TREATMENT. THE ABOVE ANALYSES ARE MERELY TYPICAL GUIDES. THEY ARE NOT TO BE CONSTRUED AS BEING SPECIFICATIONS. ALL OF THE ABOVE INFORMATION IS, TO THE BEST OF OUR KNOWLEDGE, TRUE AND ACCURATE. HOWEVER, SINCE THE CONDITIONS OF USE ARE BEYOND OUR CONTROL, ALL RECOMMENDATIONS OR SUGGESTIONS ARE MADE WITHOUT GUARANTEE, EXPRESS OR IMPLIED, ON OUR PART. WE DISCLAIM ALL LIABILITY IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED HEREIN OR OTHERWISE, AND ALL SUCH RSKS ARE ASSUMED BY THE USER. WE FURTHER EXPRESSLY DISCLAIM ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. V2/08/2012

www.neuromics.com

Neuromics • 5325 West 74th Street, Suite 8 • Edina, MN 55439 phone 866-350-1500 • fax 612-677-3976 • e-mail: <u>pshuster@neuromics.com</u>

 Immediately prior to addition to the samples and controls, dilute Autophagy Probe, Red reagent 1:5 by adding 400 µL PBS to each vial to form the 50X Autophagy Probe, Red solution. Use 50X Autophagy Probe, Red within 30 minutes of dilution into aqueous buffers.

These amounts are recommendations, however, the sample size and Autophagy Probe, Red staining concentration needed may vary based on the experimental conditions used. Each investigator should adjust the amount of Autophagy Probe, Red to accommodate the particular cell line and research conditions.

Fixative

Fixative is a formaldehyde solution designed to crosslink and aggregate intracellular components. If the stained cell populations cannot be evaluated immediately after labeling with Autophagy Probe, Red, add Fixative at a ratio of 1:5-1:10. For example, to use Fixative at 1:10, add 100 μ L Fixative to 900 μ L cells. Never add Fixative until all the staining and fi nal wash steps have been completed. Fixed cells may be stored on ice or at 40 C for up to 16 hours, protected from light.

Fixative will not interfere with the red fluorescent label. Do not use absolute ethanol- or methanol-based fixatives, as they may inactivate the Autophagy Probe, Red label.

• **Danger:** Fixative contains formaldehyde <10% and methanol <5% and is harmful. Avoid contact with skin, eyes, and clothes by wearing a lab coat, gloves, and safety glasses. In case of exposure, immediately flush eyes or skin with water.

Flow Cytometry Analysis

The recommended sample size is 0.5 mL. The recommended cell concentration is 3-5 x 105 cells/mL. Sample flow cytometry results shown in Figure 2.

- 1. Expose cells to the experimental or control conditions. Set aside two populations to create positive and negative instrument controls with Autophagy Probe, Red (Section 8, and Figure 2).
- 2. Optional wash step: depending on the experimental conditions used to induce autophagy, it may be necessary to wash cells and then resuspend them in fresh cell culture medium prior to staining.
- 3. Transfer 490 µL cells into fresh tubes.
- 4. Add 10 μL 50X Autophagy Probe, Red solution, forming a fi nal volume of 500 μL. Autophagy Probe, Red can be added directly to the cell culture medium for the staining process. If different cell volumes were used, add Autophagy Probe, Red at a ratio of 1:50. Mix by gently fl icking the tubes. The amount of Autophagy Probe, Red should be optimized for each cell line and experimental condition.
- 5. Incubate cells at 37°C protected from light. The incubation period may range from 30 minutes to several hours and should be optimized for each cell line and experimental condition. As cells may settle on the bottom of the tubes, gently resuspend them by swirling cells every 20 minutes to ensure an even distribution of Autophagy Probe, Red throughout the staining process.
- 6. Centrifuge at 200 x g for 5 to 10 minutes at room temperature.
- Carefully remove and discard supernatants. Resuspend in 0.5 mL of 1X Cellular Assay Buffer and mix gently. If desired, cells can be washed using fresh cell culture medium or alternate buffers such as PBS containing BSA. Take care that the wash steps are completed quickly so as not to cause unanticipated cellular stress by prolonged exposure to nutrientdeprived buffers.
- 8. Repeat wash steps until samples have been washed 3 times. After fi nal centrifugation, resuspend the pellet in 0.5 mL 1X Cellular Assay Buffer.
- 9. Cells are ready for analysis. An optional fi xation step may be performed at this time. Add the provided Fixative at a v/v ratio of 1:5-1:10. For example, add 50 µL of Fixative to 450 µL of sample. To analyze the samples, measure fluorescence using a green/yellow laser equipped with an appropriate filter.

References and Citations

- 1. N. Mizushima, M. Komatsu, Autophagy: renovation of cells and tissues. Cell 147, 728-741 (2011).
- 2. B. Levine, G. Kroemer, Autophagy in the pathogenesis of disease. Cell 132, 27-42 (2008).
- 3. B. Levine, N. Mizushima, H. W. Virgin, Autophagy in immunity and infl ammation. Nature 469, 323-335 (2011).
- 4. P. Hundeshagen, A. Hamacher-Brady, R. Eils, N. R. Brady, Concurrent detection of autolysosome formation and lysosomal degradation by fl ow cytometry in a high-content screen for inducers of autophagy. BMC Biol 9, 38 (2011).

FOR RESEARCH USE ONLY

NEUROMICS' REAGENTS ARE FOR IN VITRO AND CERTAIN NON-HUMAN IN VIVO EXPERIMENTAL USE ONLY AND NOT INTENDED FOR USE IN ANY HUMAN CLINICAL INVESTIGATION, DIAGNOSIS, PROGNOSIS, OR TREATMENT. THE ABOVE ANALYSES ARE MERELY TYPICAL GUIDES. THEY ARE NOT TO BE CONSTRUED AS BEING SPECIFICATIONS. ALL OF THE ABOVE INFORMATION IS, TO THE BEST OF OUR KNOWLEDGE, TRUE AND ACCURATE. HOWEVER, SINCE THE CONDITIONS OF USE ARE BEYOND OUR CONTROL, ALL RECOMMENDATIONS OR SUGGESTIONS ARE MADE WITHOUT GUARANTEE, EXPRESS OR IMPLIED, ON OUR PART. WE DISCLAIM ALL LIABILITY IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED HEREIN OR OTHERWISE, AND ALL SUCH RSKS ARE ASSUMED BY THE USER. WE FURTHER EXPRESSLY DISCLAIM ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. V2/08/2012

www.neuromics.com

Neuromics • 5325 West 74th Street, Suite 8 • Edina, MN 55439 phone 866-350-1500 • fax 612-677-3976 • e-mail: <u>pshuster@neuromics.com</u>