Strep-Tactin ${ }^{\circledR}$ XT 4Flow ${ }^{\circledR}$ References

This is not a complete list of all references using Strep-Tactin ${ }^{\circledR}$ XT 4Flow ${ }^{\circledR}$ products, but a short overview of relevant and open access ones.

Classic capacity

- Anderson, D. W. et al. (2021). Nature Communications, 12(1), 3867. doi:10.1038/s41467-021-23943-x
Anderson and colleagues produced their target proteins in E. coli BL21 (DE3) and used our Strep-Tactin ${ }^{\circledR}$ XT 4Flow ${ }^{\circledR}$ resin for column-based purification of these metalloproteins. Enzymatic activity was determined successfully.
- Berg, A. F. et al. (2021). Cytokine: X, 3(4), 100058. doi:10.1016/j.cytox.2021.100058
Berg and colleagues produced their target proteins either and stably transfected CHO-K1 cells or in Expi293 and used our Strep-Tactin ${ }^{\circledR}$ XT 4Flow ${ }^{\circledR}$ resin for column-based purification of their target proteins containing a C-terminal Twin-Strep-Tag ${ }^{\oplus}$. Purity was proved by SDS-PAGE analysis.
- Beribisky, A. V. et al. (2022). The Protein Journal. doi:10.1007/s10930-022-10054-9
Beribisky and colleagues used our pre-packed Strep-Tactin ${ }^{\circledR}$ XT 4Flow ${ }^{\circledR}$ columns for target purification from cell lysate. The buffers have been adapted from our standard composition to fulfill the requirements of the target protein.
- Serna, M. et al. (2021). Nucleic Acids Research, 50(2), 1128-1146. doi:10.1093/nar/gkab1267
Serna et al. used our Strep-Tactin ${ }^{\circledR}$ XT 4Flow ${ }^{\circledR}$ resin for in vitro pull-down experiments with their Strep-tag ${ }^{\circledR}$ II bait proteins. Protein interaction was analyzed via SDS-PAGE.

High capacity

- Bangaru, S. et al. (2022). Sci Adv, 8(18), eabn2911. doi:10.1126/sciadv.abn2911
After expression in FreeStyle 293-F cells Bangaru et al. purified SARS CoV-2 spike protein with a Twin-Strep-tag ${ }^{\circledR}$ using our Strep-Tactin ${ }^{\circledR}$ XT 4 Flow ${ }^{\circledR}$ high capacity columns and our buffers.
- Muller, A. U. et al. (2021). Sci Adv, 7(49), eabl4064. doi:10.1126/sciadv.abl4064

Muller and colleagues produced their Twin-Strep-tag ${ }^{\circledR}$ target protein in Mycobacterium smegmatis and used our Strep-Tactin ${ }^{\circledR}$ XT 4Flow ${ }^{\circledR}$ high capacity resin for purification. To test their initial hypothesis of potential interactions, a pull-down assay using Strep-Tactin ${ }^{\circledR}$ XT 4 Flow ${ }^{\circledR}$ high capacity resin was performed.

- Ofir, G. et al. (2021). Nature, 600(7887), 116-120. doi:10.1038/s41586-021-04098-7
Ofir and colleagues produced their target protein containing a Twin-Strep-tag ${ }^{\circledR}$ in E. coli BL21 (DE3) and used our Strep-Tactin ${ }^{\circledR}$ XT 4Flow ${ }^{\circledR}$ high capacity resin for purification.

Strep-Tactin ${ }^{\circledR}$ XT 4Flow ${ }^{\circledR}$ Starter Kit - for a quick start

- Moon, H.-J. et al. (2022). Neurobiology of Disease, 164, 105631. doi:10.1016/j.nbd.2022.105631
Moon et al. used IBA's pEXPR-IBA vector and cloned a Strep-tag ${ }^{\circledR}$ II to their target protein human ApoE2. After expression in HEX293 cells, the protein was purified using our Strep-Tactin ${ }^{\circledR}$ XT 4 Flow ${ }^{\circledR}$ starter kit and purity was examined with SDSPAGE and western blot analysis.

